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Abstract
Explaining a classification decision can decipher
why a model does (or does not) work as intended.
Even when a model performs well, it is ben-
eficial to understand why it works, so a user
gains trust. As an alternative to using bounding
boxes to ground visual explanations, we employ
a Gradient-weighted Class Activation Mapping
(Grad-CAM) to an explanation model, thereby
combining both the ‘justification’ and the ‘intro-
spective’ aspects of an explainable system. Grad-
CAM uses the gradients flowing into the final
convolutional layer to produce a coarse localiza-
tion map indicating the degree which regions con-
tributed to the classification decision. We show
the results of this technique on a fine-grained birds
classification task. Additionally, we test the ro-
bustness of the explanation model by running ad-
versarial attack experiments, as well as generating
counter-factual explanations.

1. Introduction
Explaining decisions are a major part of human communica-
tion, understanding and learning. Modern neural networks
already successfully solve the tasks of localizing an object,
predicting its category and describing the object with natu-
ral language. However, an AI agent should also be capable
of justifying decisions and pointing to evidence explaining
their decisions visually as well as textually. The decisions
of neural networks are often hidden from the user and it is
an important task to provide explanatory text grounded in an
image for the user to gain trust in an AI agent. (Hendricks
et al., 2016) explores a model which produces sentences
that explain why a predicted label is appropriate for a given
image, and is an example of a ‘justification’ explanation
system which produces sentences that explain why a certain
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classification decision was made. In a follow up work (Hen-
dricks et al., 2017) the authors explore a new model which
generates similar explanations, but utilizes localized ground-
ing of constituent phrases, which ensures that the generated
explanations are more image specific. In contrast to the
two methods described above, Grad-CAM (Selvaraju et al.,
2016), an ’introspective’ method, uses gradient information
to produce a coarse localization map which highlights which
part of the image led to a class decision.

We propose to employ Grad-CAM instead of the methods
described in (Hendricks et al., 2017) to produce localized
maps which highlight why a class decision was made. In
particular, we examine which regions of the image corre-
spond to image-specific attributes ex. If the model produces
an explanation ’This is a Laysan Albatross because this bird
has a large wingspan, hooked yellow beak, and white belly”,
corresponding regions of the image (i.e ’hooked yellow
beak’, ’white belly’) should be highlighted. This method
combines both ‘justification’ and ’introspective’ methods,
and allows a user to examine both the generated explanation
and localized image regions.

2. Related Work
Our work mainly builds up on the model presented in (Hen-
dricks et al., 2016) and we combine it with a gradient based
approach for visualizing class-discriminative image regions.
We also draw from recent work on experiments with adver-
sarial examples presented to our network architecture.

Generating Visual Explanations. The model presented in
(Hendricks et al., 2016) focuses on the discriminating prop-
erties of the visible object, jointly predicts a class label, and
generates an explanation of why the predicted label is appro-
priate for the image. The model incorporates a loss function
based on sampling and reinforcement learning to generate
explanation sentences. To constrain object parts to actually
be present in the image, (Hendricks et al., 2017) extends
the model by utilizing localized grounding of constituent
phrases in generated explanations to ensure image relevance.
This is done by first generating visual explanations, then
chunking them into smaller pieces and subsequently localiz-
ing each chunk with a grounding model. In the sequel, we
refer to this model as GVE.
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Localization of class-discriminative regions. In this work,
we utilize the Grad-CAM approach as discussed in (Sel-
varaju et al., 2016) instead of using bounding boxes to
ground object specific features in an image. Grad-CAM
is a class-discriminative localization technique that can gen-
erate visual explanations from any network using convolu-
tional neural networks (CNN) without requiring architec-
tural changes or re-training. Grad-CAM uses the gradient
information flowing into the last convolutional layer of the
CNN to decipher the importance of each neuron for a de-
cision of interest. This enables highlighting image regions
which explain decisions the network can possibly make.
Previous works have evaluated the results of introspection
via a qualitative evaluation of a few results, custom metrics
or human subjects (Hendricks et al., 2017; Springenberg
et al., 2014; Vondrick et al., 2013; Zeiler & Fergus, 2014).

Adversarial Attacks. In (Goodfellow et al., 2015) the au-
thors argue that classifiers do not learn the true underlying
concepts that determine the correct output label, but rather
only provide good performance on naturally occurring data
and fail to predict the correct class label when small local
changes in the image are made. That is, perceptually the
difference after making such a change is almost unrecogniz-
able whereas in the feature space of the network this leads
to completely different classes.

3. Generating Visual Explanations
In the GVE model1, a deep fine-grained classifier takes an
image as an input and produces visual features and a class
label. It is then the task of an explanation model to use
the provided label and features to generate a sentence that
describes the image appropriately.

In the classifier model, a CNN is used to extract features
from the input image. These features are passed through
a Compact Bilinear Pooling (CBP) layer as proposed in
(Gao et al., 2016). This is an efficient method to reduce the
dimensionality of features from a convolutional layer that
can be used in fine-grained classification tasks. The bilinear
features are then passed to a fully connected layer that gives
the predicted label. The explanation model then uses both
the bilinear features and the predicted label as inputs to two
stacked LSTMs, which generate the explanation sentence.

Architecturally, this model is based on the LRCN model
(Donahue et al., 2015), although it differs on the training
procedure. The GVE model is trained with two objectives
to minimize: a discriminative and a relevance loss. The dis-
criminative loss allows the model to produce explanations
that truly differentiate an instance of a class from another,
whereas the relevance loss allows it to generate explana-
tions actually observed in the image, as opposed to generic

1We thank Stephan Alaniz for providing the source code.

descriptions of the class of the instance.

4. Grad-CAM
The Grad-CAM approach works on the feature maps pro-
duced by the last convolutional layer in the classifier net-
work of the GVE model. In particular, we are interested
in the gradient of components of an explanation (probabili-
ties of words) with respect to the feature maps, in order to
determine what variations in certain regions of the image
produce the largest variation on the predicted word. Since
the GVE architecture is fully differentiable, it is possible to
calculate these gradients. We adapt the Grad-CAM method
to the model as follows: let yc be the log-probability of the
word at position c in the sentence, and let Ak

ij be the value
at the position (i, j) of the feature map produced by the k-th
filter of the last convolutional layer. An importance weight
is first calculated via global average pooling as
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The obtained map has the size of the feature maps resulting
from the last convolutional layer. In order to visualize it
on top of the input image, we upsample it using bilinear
interpolation so that its resolution matches the image.

5. Adversarial attacks using the Fast
Gradient Sign Method

To further bolster confidence in the model, we have to en-
sure that it is robust to adversarial attacks. We use the Fast
Gradient Sign Method proposed by (Donahue et al., 2015)
to generate adversarial images. Let the network have param-
eters θ, the input x and a target y. If the cost of the network
is given by J(θ,x, y), then an adversarial sample x′ can be
obtained by the following equation:

x′ = x+ ε sign(∇xJ(θ,x, y))

where sign operates on each element, ε is a parameter set
by the user, and the gradient is computed by standard back-
propagation. We design two adversarial attacks: The first
tries to ‘attack’ the explanation generated by the GVE model,
by setting J to the loss of the GVE model as proposed in
(Hendricks et al., 2016). The second experiment tries to
attack the image classifier which produces (a) the class
label and (b) the bilinear features, by setting J to the cross-
entropy loss corresponding to the image classifier’s outputs.
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6. Experimental Setup
6.1. Dataset

To train the model we used images from the CUB dataset
(Wah et al., 2011), which consists of 11.788 images of 200
different classes of birds. Descriptions for these images
were taken from a previoulsy developed extension (Reed
et al., 2016) that used the Amazon Mechanical Turk service
to provide descriptions of the images. Additionally, we
resize and crop the images so they have a size of 224×224
while preserving the aspect ratio.

6.2. Model implementation

The GVE architecture requires to train a sentence classifier,
an image classifier and an explanation model. All the mod-
els were implemented using the PyTorch library (Paszke
et al., 2017), with the Adam optimizer, an initial learning
rate of 0.001 and a batch size of 128. When training the
image classifier, the pre-trained CNN was not fine-tuned.

The sentence classifier was implemented using an LSTM
stack, as proposed in (Donahue et al., 2015), and a fully
connected layer. For the deep fine-grained image classifier
we used a modified CNN, based on the D configuration
proposed in (Simonyan & Zisserman, 2014) which had been
previously trained on the ImageNet dataset (Deng et al.,
2009). We remove the last fully connected layers so that
only the feature maps (after a ReLU and max-pooling layer)
are passed through the CBP layer. The dimension of the
obtained bilinear features was set at 8192. These are then
passed through a fully connected layer with 200 outputs
corresponding to the number of classes.

For the explanation model the dimension of the word em-
beddings and the hidden states of the LSTMs was set to
1000.

6.3. Introspection

Given an input image, the GVE model generates an explana-
tion in the form of log-probabilities of words. We used the
gradient of these log-probabilities with respect to the feature
maps, following equations 1 and 2, using two approaches:
by adding the log-probabilities and back-propagating the
gradient of the result, and by back-propagating the log-
probabilities individually for chunks of attributes in the
generated explanation (the chunking procedure is described
below). With the first approach we obtain a single map
highlighting the information used in the image to obtain the
complete explanation, whereas with the second we obtain a
highlight map for each attribute in the explanation.

6.4. Evaluation

In order to evaluate the generated explanations, we use
METEOR and CIDEr scores, as proposed in (Hendricks
et al., 2016). Both metrics attempt to measure how words in
two sentences match.

To evaluate the localization maps generated by the intro-
spection method, we provide a qualitative evaluation us-
ing some example results. In addition to this, we propose
the gradient-to-box ratio (GBR) as a quantitative measure
based on the bounding boxes provided with the CUB dataset,
which enclose the body of the bird. The proposed measure
is obtained by calculating the fraction (as a percentage) of
the highlights that lies within the bounding box, where the
highlights are calculated by by adding the log-probabilities
of the explanation and back-propagating the gradient of the
result. According to this, if all the highlights were inside the
bounding box a GBR of 100% would be obtained, whereas
if all the highlights were outside this would result in a GBR
of 0.

6.5. Adversarial attacks

For testing the GVE model, we first compute adversarial
samples by applying the described fast gradient sign method.
In this experiment, we restrict ourselves to a qualitative
analysis as evaluating the explanations generated by the
adversarial samples requires expert knowledge. We focus
on obvious wrong explanations (ex. ‘a yellow beak’ for a
bird with a black beak). We also examine the effect of the ε
parameter by visual inspection.

In addition, for evaluating the robustness of the image clas-
sifier, we compute its accuracy on the test dataset, and com-
pare it with the accuracy computed on the generated adver-
sarial samples. For this experiment, we fix ε = 0.1.

6.6. Attribute Chunker

We used spaCy’s Dependency Parser (Honnibal & John-
son, 2015) to parse the explanation. We then find all nouns
and their amod (Adjective Modifier) dependencies. For the
sentence ’this bird has a yellow crown ...’, spaCy detects
’crown’ as a noun with adjective modifier ’yellow’. This
method has high precision but low recall: the detected at-
tributes are almost certain to be correct, but some attributes
might be missing.

6.7. Generating counter-factual explanations

Given two instances from two distinct classes, a counter-
factual explanation states why one image does not belong
to the opposed class. Ideally, we would like to generate
such an explanation from a model, however due to time
constraints we built a rule based generator. We use the at-
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(a) This is a Summer Tanager be-
cause this bird is red with black
on its wings and has a long pointy
beak

(b) This is a Yellow breasted Chat
because this bird has a yellow belly
and breast with a black supercil-
iary and white wingbars

(c) This is a Yellow headed Black-
bird because this bird has a grey
crown a yellow breast and a white
belly

Figure 1. Explanations generated by the model

tribute chunker to identify attributes in the explanation of
both instances. Then, the following rules are used: (i) If
there are overlapping attributes with different amod depen-
dencies, add them to the counter-factual explanation. (ii)
if an attribute is present in the true instance and not in the
false instance, add it. A few examples of counter-factual
explanations generated by this approach are presented in
Figure 5.

7. Results
7.1. Experiments

Generating explanations. After training the GVE model,
we obtained a METEOR score of 27.4 and a CIDEr score
of 49.7 on a test set with 5.297 images. These values are
slightly lower than those reported in (Hendricks et al., 2016).
We attribute the differences to variations in the implementa-
tion and the fact that we did not fine-tune the CNN which
had been pre-trained on the Imagenet dataset. In spite of
this we note that the results are sensible, as can be seen in
some of the examples shown in Fig. 1.

Introspection. When calculating Grad-CAM with respect
to the complete explanation, we obtained a GBR of 71%
with a standard deviation of 10% on the test set, thus sug-
gesting that most of the highlights provided by Grad-CAM
lie within the bounding box containing the bird. An exami-
nation of these highlights (see Figure 4 ) shows that this is
indeed the case.

In the second approach, where we obtain highlights per
attribute obtained by the chunker, we observed that while
for some of the attributes the highlights would appear in the
corresponding parts of the bird, others would often appear
in non-related regions of the image (see Figure 3). We
attribute this to the fact that sequential predictions made
by the LSTM stack modify gradient computations so that

attributes cannot be directly related to regions in the image
when using Grad-CAM.

Adversarial attacks. We first observe that the adversar-
ial samples generated do change the model’s explanation,
sometimes drastically, depending on the value of ε. Some
explanations are obviously wrong, so the model is not very
robust to adversarial attacks. However, we note that unless
we apply a really high ε to the model, the explanations of
the adversarial examples are relevant to the untrained eye.
A brief qualitative analysis is presented in Figure 2.

For the second experiment, we first note that the image clas-
sifier achieves a reasonable accuracy of 70.27% on the test
set. On the adversarial samples however, it only achieves
an accuracy of 0.44%, a huge decrease in performance.
This indicates that the image classifier, and the GVE model
(which uses both the features and the output of the image
classifier), is clearly not robust.

7.2. Demo

We have created a website with a demonstration that in-
tegrates the ideas treated in the present work (see Figure
6):

• Generating explanations. After selecting an image,
the explanation is shown and the highlights produced
by Grad-CAM are superimposed on the image.

• Adversarial attacks. The input image is modified
so that changes are not visually perceptible and the
modified explanation is shown.

• Counter-factual explanations. An explanation is
given and one of two images must be selected. When
doing so, a factual explanation is given on the correct
choice, and a counter-factual explanation is given for
the incorrect one.
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(1a) this bird has
a yellow belly and
breast with a short
pointy bill

(2a) this bird has
a white belly and
breast with a black
crown and long
pointy bill

(3a) this bird is black
with red eyes and
has a long pointy
beak

(4a) this bird has
a white belly and
breast with a blue
crown and wing

(5a) this bird has
a white belly and
breast red crown and
clack coverts and
white secondaries

(1b) this is a bird
with a small pointed
bill beautiful white
eyebrow and yellow
breast

(2b) this is a white
bird with black
crown bright wing
feathers and a thick
sharp bright orange
bill

(3b) this is a bird
with a black head
back wings and tail
with a bright yellow
breast belly and ab-
domen

(4b) this is a bird
with a blue head
bright yellow body
and orange tail

(5b) this is a bird
with a yellow breast
gray back and white
and black rectrices

Figure 2. Explanations of the original (top row) and the adversarial images (bottom row). Note that the images appear to be practically
the same for the human eye. The explanations for the adversarial images even start off different (‘this is a bird ...’). Even though the
explanations for (1), (2), (3) are different, they explanations seem reasonable to the untrained eye. However the explanations for (4) and
(5) are clearly erroneous. All images use ε = 0.1

8. Discussion
Algorithm Reliability. The motivation for explainable AI
is guided by legal and privacy aspects. The new European
General Data Protection Regulation 2 (GDPR 2016/679 and
ISO/IEC 27001) enforced on May 25th 2018 forbids us-
age of AI systems which are not able to explain why a
decision has been made. Explainable AI has become so
important that the U.S. Defense Advance Research Projects
Agency (DARPA) has set up an Explainable AI program
on its agenda 3. The realm of explainable AI contrasts with
black box systems where even the designers can not retrace
class decisions of deep neural networks. Hence, auditing de-
cision mechanisms in AI systems are vital to ensure that the
learned decision rules reflect the implicit desires of the hu-
man system designers. However, even the models described
in this paper suffer from problems. They are clearly sensi-
tive to adversarial attacks as we showed in previous sections.
However, recent results (Kurakin et al., 2018) show that
even models specially designed to withstand these attacks
have a long way to go. However, we hope that Explainable
models pave the way forward, as they are especially good at

2https://www.eugdpr.org/
3https://www.darpa.mil/program/explainable-artificial-

intelligence

determining the failure modes of a model.

The network architecture as described in this research could
also be applied to medical images. The decisions made by
the AI system then have an impact on human health and
should be able to align with the decisions made by experts
in the field.

Data Governance. Data governance covers the mainte-
nance and management of data to avoid the existence of poor
data. The models described in this paper can contribute sig-
nificantly to improved data governance. For instance, they
can be used as in the data auditing process: If a regulatory
body requires a justification of a classification decision, or
if there are ethical concerns regarding use of A.I in certain
areas (e.g. use in policy making or health care), then an
explanation model can be used to validate decisions.

Security. Security is crucial for many applications, espe-
cially so for the models described in this paper. We discuss
it from two perspectives: whether the model can be manipu-
lated, and the security of the interface itself.

We have already shown that the model itself can easily be
manipulated to provide differing explanations. However,
the method we have used is an example of a non-targeted
’white box’ attack: we have access to the model itself and its
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internal representation. An attacker would not have access
to this, therefore, it is protected against white box attacks.
We note that it is still sensitive to other attacks, specifi-
cally ’black box attacks with probing’ (Kurakin et al., 2018)
which do not require internal details, but allow an attacker
to observe outputs for a given input (which we provide via
a REST API). This requires multiple calls to the API, as
described next.

To make sure the data being sent to the client does not over-
lap we use separate instances of the explainer to generate
explanations. The application is designed using REST ar-
chitecture which allows state of the art security mechanisms
such as OAuth. As our application is built solely for demon-
stration purposes and as we have no individual user profiles
we do not require any authentication or authorization meth-
ods.

Privacy. Since the dataset we used for the model does not
contain personal information, privacy is not a direct issue.
However, such an explainable model could be used in appli-
cations that, if the data is not fully anonymized, could lead
to a violation of privacy, and it could be used to target spe-
cific individuals according to the explanations given by the
model when applying it in industries such as health care, and
the financial, governmental and telecommunication sectors.

9. Conclusion
We have reproduced the GVE architecture in order to obtain
an explanation model to which we can apply introspection
using the Grad-CAM technique. The highlights obtained for
a complete explanation were validated using the fraction of
highlights falling within the ground-truth bounding boxes
and showed that the GVE model is using most of the body of
the birds to produce an explanation. We also applied Grad-
CAM to individual attributes. In some cases the highlights
would lie on the corresponding attributes, although in other
cases parts of the environment would be highlighted. As
future work we propose further tuning of the visual model,
since we used a model pre-trained for the ImageNet dataset
but did not fine tune it for the bird classification task. This
could improve the performance of the explanation model
and the information provided by introspection. Additionally,
we propose further work on the attribute chunker so that
it can be effectively used with Grad-CAM to obtain better
insight on the generated explanations.

We generated adversarial attacks for the GVE architecture
and found that it is fairly robust to such attacks when using
the fast gradient sign method, as the explanations would
change but still remained sensible, although in other cases
errors were introduced. However, we saw that the image
classifier part of model itself is extremely sensitive to adver-
sarial attacks. Clearly, the robustness of this model needs

to be improved. This is of special importance for the GVE
model since the explanations should be secure to such at-
tacks before it can be used with its intended purpose. These
results are yet to be validated on a larger scale, as this was
evaluated by examining particular examples. Different at-
tack procedures can be implemented as well as targeted
attacks, so that particular parts of an explanation could be
changed.

For counter-factual explanations, the rule based function
based on the attribute chunker gives good results. Improving
the behavior of the attribute chunker will also improve the
quality of the counter-factual explanations. An alternative
approach is to provide pairs of images as input to train a
language model. Higher computation will be required as the
training complexity is n2 for pairs of input images.

Our experiments in Explainable A.I. shed light onto how
existing methods perform, with and without adversarial at-
tacks, for end-user oriented tasks such as generating counter
factual explanations.
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A. Appendix

(1a) Cape Glossy
Starling

(2a) Cerulean War-
bler

(3a) Red headed
Woodpecker (4a) Sooty Albatross (5a) Warbling Vireo

(1b) long pointy
beak (2b) blue crown (3b) white belly (4b) long hooked bill (5b) white belly

Figure 3. Grad-CAM results. Given an input image (top row), we obtain highlights (bottom row) for attributes in the generated explanation.
While some attributes are effectively highlighted, others are not, highlighting non-relevant regions of the image.

(a) Kentucky Warbler (b) Blue Winged Warbler (c) Rose Breasted Grosbeak (d) White Breasted King-
fisher

Figure 4. Grad-CAM highlights obtained by backpropagating the complete explanation. The fraction of highlights that falls within the
ground truth bounding box is measured with the GBR (see section 6.4).
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(1a) this bird has a
bright blue head and
a white belly

(2a) this bird has a
black crown a black
breast and a brown
belly

(3a) this bird has
a yellow belly and
breast with a short
pointy bill

(4a) this bird has
a white belly and
breast black and
white wings and a
red head with a long
black bill

(5a) this bird is
yellow with brown
spots and a small
beak

(1b) this bird has a
red head and not a
bright blue head

(2b) this bird has a
white breast and not
a black breast and
has a blue crown and
not a black crown

(3b) this bird has a
long bill and not a
short bill and doesn’t
have a yellow belly

(4b) this bird has a
speckled belly and
not a white belly and
has a short bill and
not a long black bill

(5b) this bird doesn’t
have brown spots
and doesn’t have a
small beak

Figure 5. Counter Factual Explanations: The true class’ explanations (a) are compared with explanations of another class (b) to generate
counter-factual explanations which tell why it wasn’t chosen as the true class
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(a) Fact Explainer

(b) Adversarial Explainer

(c) Counterfactual Explainer

Figure 6. Demo Interfaces


